GO otterSec

Security Assessment

May 13th, 2024 — Prepared by OtterSec

Ajay Kunapareddy
Akash Gurugunti

Robert Chen

d1r3wolf@osec.io

sudOu53r.ak@osec.io

r@osec.io

mailto:d1r3wolf@osec.io
mailto:sud0u53r.ak@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary

Overview
Key Findings
Scope
Findings
Vulnerabilities
OS-TRF-ADV-00
OS-TRF-ADV-01
OS-TRF-ADV-02
General Findings
OS-TRF-SUG-00

OS-TRF-SUG-01

Appendices

| Improper Reward Distribution
| Inappropriate Unlock Amount

| Incorrect Rounding Directions

| Minimum Limit On Staking

| Limitless Allocations

Vulnerability Rating Scale

Procedure

© 2024 Otter Audits LLC. All Rights Reserved.

10

"

12

1/12

01— Executive Summary

Overview

TruFin engaged OtterSec to assess the Aptos Staker aptos program. This assessment was
conducted between April 30th and May 10th, 2024. For more information on our auditing methodology,
refer to Appendix B.

Key Findings
We produced 5 findings throughout this audit engagement.

In particular, we identified a vulnerability where the fee used for share price calculation is incorrect,
resulting in users receiving extra rewards from others active in the subsequent epoch (OS-TRF-ADV-00).
Additionally, we highlighted certain rounding issues that may deplete the protocol's assets, including the
use of an incorrect amount to create an unlock request (OS-TRF-ADV-01) and the implementation of
improper rounding directions within the unlock functionality (OS-TRF-ADV-02).

We also made some recommendations regarding minimum limitations on the staking amounts (OS-TRF-
SUG-00) and the allocation system (OS-TRF-SUG-01).

Scope

The source code was delivered to us in a Git repository at
https://github.com/TruFin-io/aptos-staker-ottersec. This audit was performed against commit 67005cc.

A brief description of the programs is as follows:

Name Description

Aptos Staker A liquid staking solution built on Aptos ecosystem.

© 2024 Otter Audits LLC. All Rights Reserved. 2/12

https://github.com/TruFin-io/aptos-staker-ottersec
https://github.com/TruFin-io/aptos-staker-ottersec/commit/67005cc18b8cae926f29b2ccbc1c6b237db7acde

02 — Findings

Overall, we reported 5 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

© 2024 Otter Audits LLC. All Rights Reserved.

Severity

HIGH
MEDIUM
LOW
INFO

Count

3/12

03 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

add_stake_fees is utilized for share price calcula-

OS-TRF-ADV-00 LOW RESOLVED ® | L o

tion resulting in improper reward distribution.

The amount utilized to create an unlock request in
OS-TRF-ADV-01 Loy SO ED Y internal_unlock is incorrect.

Improper rounding directions are utilized in
OS-TRF-ADV-02 LOW RESOLVED ®

internal_unlock .

© 2024 Otter Audits LLC. All Rights Reserved. 4 /12

TruFin Aptos Staker Audit 03 — Vulnerabilities

Improper Reward Distribution Low OS-TRF-ADV-00

Description

The delegation_pool transfers the add_stake_fees tothe NULL_SHAREHOLDER and later returns

them to the pool at the end of the epoch. This process occurs because the delegation pool does not
distinguish between active and pending_active users, allowing both groups to receive rewards. To

ensure active users get their rewards and pending_active users receive their add_stake_fees
as rewards in the subsequent epoch, the system imposes add_stake_fees on users.

>_ aptos-staker/sources/staker.move

let add_stake_fee = amount - (active_after_stake - active_before_stake);

s
let pools_mut = borrow_global_mut<DelegationPools>(RESOURCE_ACCOUNT) ;

let pool_mut = smart_table::borrow_mut(&mut pools_mut.delegation_pools, delegation_pool);
pool_mut.add_stake_fees = pool_mut.add_stake_fees + add_stake_fee;

In this protocol, add_stake_fees which is distributed as rewards in the next epoch, is treated as stake
within the same epoch, resulting in the minting of TruAPT . Consequently, users will receive extra rewards
from others who are active in the subsequent epoch.

Remediation

Avoid considering add_stake_fees as staked amount and only mint truAPT for the amount that is
actually being staked (active_after_stake - active_before_stake).

Patch

The development team acknowledges the issue and accepts the risk.

© 2024 Otter Audits LLC. All Rights Reserved. 5/12

TruFin Aptos Staker Audit 03 — Vulnerabilities

Inappropriate Unlock Amount Low OS-TRF-ADV-01

Description

internal_unlock unlocks the amount from the delegation pool and burns the equivalent truAPT
tokens. It creates an UnlockRequest for the user with the unstaked amount, which later facilitates the
withdrawal of APT from the protocol.

>_ aptos-staker/sources/staker.move

let unstaked_apt = pending_inactive - pending_inactive_pre_unlock;
assert! (amount >= unstaked_apt && amount <= unstaked_apt + 2,
— error::invalid_argument (EINVALID_UNSTAKED_AMOUNT)) ;

let unlock_request = UnlockRequest{
amount: amount,
user: receiver,
olc: olc,
delegation_pool: pool,
residual_rewards_collected: false

unstaked_apt represents the actual stake amount being unstaked from the delegation pool. Additionally,
amount sometimes exceeds the unstaked amount, potentially disbursing more APT than intended.
Therefore, it is advisable to utilize unstaked_apt to create the unlock request.

Remediation

Utilize unstaked_apt instead of amount while creating the UnlockRequest in internal_unlock.

Patch

The development team acknowledges the issue and accepts the rounding costs to enhance user experi-
ence.

© 2024 Otter Audits LLC. All Rights Reserved. 6/12

TruFin Aptos Staker Audit 03 — Vulnerabilities

Incorrect Rounding Directions Low OS-TRF-ADV-02

Description

internal_unlock unlocks the amount from the delegation pool and burns the equivalent truAPT
tokens. It creates an UnlockRequest for the user with the unstaked amount, which later facilitates the
withdrawal of APT from the protocol.

>_ aptos-staker/sources/staker.move

let truAPT_amount;

if (max_withdraw - amount < MIN_COINS_ON_SHARES_POOL) {
amount = max_withdraw;
truAPT_amount = truAPT::balance_of(receiver);

} else {
truAPT_amount = convert_to_shares(amount);

35

amount represents the stake requested for unstaking from the delegation pool and allocated to the user,
and truAPT_amount denotes the tokens taken from the user and burned. The protocol benefits from
rounding down when calculating amount and rounding up when calculating truAPT_amount .

Remediation

Employ convert_to_assets(truAPT: :balance_of(user)) to calculate the amount and apply
rounding up when calculating the truAPT_amount .

Patch

The development team acknowledges the issue and accepts the rounding costs to enhance user experi-
ence.

© 2024 Otter Audits LLC. All Rights Reserved. 7112

04 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns and may result in security issues in the future.

ID Description
OS-TRF-SUG-00 The existing minimum limitation on staking may be slightly restrictive on users.
OS-TRF-SUG-01 Limitless allocations may result in an inaccurate total allocated amount.

© 2024 Otter Audits LLC. All Rights Reserved. 8/12

TruFin Aptos Staker Audit 04 — General Findings

Minimum Limit On Staking 0S-TRF-SUG-00

Description

Using MIN_COINS_ON_SHARES_POOL while staking and unlocking may be quite stringent. A more effective
approach would be to deposit the required amount during the initialization phase. This would eliminate
the need to constantly ensure that the pool maintains a sufficient stake, thereby simplifying the process
and reducing potential complications.

Remediation

Deposit the required amount during the initialization phase to eliminate the need to constantly ensure that
the pool maintains a sufficient stake.

Patch

Acknowledged by the development team.

© 2024 Otter Audits LLC. All Rights Reserved. 9/12

TruFin Aptos Staker Audit 04 — General Findings

Limitless Allocations OS-TRF-SUG-01

Description

The allocation model in the protocol used for reward distribution appears weak. While not a security
vulnerability due to the centralized nature of these functions, it should be confirmed that these are
intentional design choices.

For example:

1. A user may transfer TruAPT coins even after allocation.

2. A user may allocate the maximum withdrawal amount of APT multiple times: enabling users to
excessively increase the allocated amount for a user, and in turn increase the total allocated amount.

3. A user may deallocate at any time without distributing rewards.

It is crucial to determine if these behaviors fall within the scope of the protocol’s design or if they represent
oversights that need to be addressed.

Remediation

Lock the amount of truAPT that is allocated so that it may not be transferred out of the account before
distribution.

Patch

Acknowledged by the development team.

© 2024 Otter Audits LLC. All Rights Reserved. 10/12

A — Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.
Informational findings may be found in the General Findings.

CRITICAL

HIGH

MEDIUM

LOW

INFO

Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.
Examples:

« Misconfigured authority or access control validation.
» Improperly designed economic incentives leading to loss of funds.

Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.
Examples:

e Loss of funds requiring specific victim interactions.
« Exploitation involving high capital requirement with respect to payout.

Vulnerabilities that may result in denial of service scenarios or degraded usability.
Examples:

o Computational limit exhaustion through malicious input.
» Forced exceptions in the normal user flow.

Low probability vulnerabilities, which are still exploitable but require extenuating circumstances
or undue risk.

Examples:

« Oracle manipulation with large capital requirements and multiple transactions.

Best practices to mitigate future security risks. These are classified as general findings.
Examples:

« Explicit assertion of critical internal invariants.
« Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 1/12

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the program'’s implementation requires a deep understanding of the chain’s
execution model. While this varies from chain to chain, some common implementation vulnerabilities
include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strong understanding of the underlying system and the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,
we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,
picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 12 /12

	Executive Summary
	Overview
	Key Findings
	Scope

	Findings
	Vulnerabilities
	[8.75em][l]OS-TRF-ADV-00 | Improper Reward Distribution
	[8.75em][l]OS-TRF-ADV-01 | Inappropriate Unlock Amount
	[8.75em][l]OS-TRF-ADV-02 | Incorrect Rounding Directions

	General Findings
	[8.75em][l]OS-TRF-SUG-00 | Minimum Limit On Staking
	[8.75em][l]OS-TRF-SUG-01 | Limitless Allocations

	Appendices
	Vulnerability Rating Scale
	Procedure

